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The two- and three-dimensional stability properties of the family of coherent shear- 
layer vortices discovered by Stuart are investigated. The stability problem is formu- 
lated as a non-separable eigenvalue problem in two independent variables, and solved 
numerically using spectral methods. It is found that there are two main classes of 
instabilities. The first class is subharmonic, and corresponds to pairing or localized 
pairing of vortex tubes; the pairing instability is most unstable in the two-dimensional 
limit, in which the perturbation has no spanwise variations. The second class repeats 
in the streamwise direction with the same periodicity as the bmic flow. This mode is 
most unstable for spanwise wavelengths approximately 8 of the space between vortex 
centres, and can lead to the generation of streamwise vorticity and coherent ridges 
of upwelling. Comparison is made between the calculated instabilities and the observed 
pairing, helical pairing, and streak transitions. The theoretical and experi,mental 
results are found to be in reasonable agreement. 

1. Introduction 
Experimental evidence that has been accumulating over the past few years has led 

to a profound advance in the understanding of the structure of turbulence in the free 
shear layer. Numerous observers have documented the formation and persistence of 
highly organized two-dimensional vortices in the course of development of a shear 
layer downstream of a splitter plate (see, for example, Winant & Browand 1974; 
Brown & Roshko 1974; Roshko 1976; Browand & Weidman 1976; Koochesfahani 
et al. 1979). The vortices have been observed under a widely varying set of flow 
conditions, and Wygnanski et al. (1979) have demonstrated the remarkable resistance 
of the structures to interfering influences. It irJ clear that any further theory of shear- 
layer development will have to take into account the dynamics of interaction of these 
large vortices. Vortex pairing, a two-dimensional interaction whereby neighbouring 
vortices amalgamate to form a larger vortex, has been experimentally implicated in 
shear-layer growth (Winant & Browand 1974). Other experiments have shown that 
the two-dimensional structures are subject to three-dimensional instabilities (Miksad 
1972; Breidenthal 1978; Bernal et al. 1979; Browand & Troutt 1980). The three- 
dimensional instabilities are involved in the generation of small-scale erratic flow 
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(Miksad 1972; Bernal et al. 1979) but do not destroy the large-scale coherent structures 
(Browand & Troutt 1980). The vortex interactions thus play a role in the important 
stage of transition to three-dimensionality, and, indeed continue to influence the 
characteristics of the developed turbulence downstream. Yet there have been few 
successful theoretical attempts to account for the wealth of phenomena uncovered. 
In the present work, we shall attempt to account for a number of the observed features 
of shear-layer development in terms of the instability of a row of large vortices to 
certain two and three-dimensional perturbations. To facilitate this study, we will 
introduce a number of simplifications. Firstly, we will deal only with shear flow in a 
homogeneous, incompressible fluid, as experiments on this simple case have revealed 
many features in common with the more complicated case of the mixing layer between 
fluids of different density. Secondly, we will assume inviscid dynamics throughout; 
this assumption will always be valid sufficiently far downstream of the splitter plate 
where scales become large, as the free shear layer does not suffer the influence of 
boundaries. Finally, we will deal with the temporal development of a shear layer 
created at  an initial instant of time rather than the spatial development of a shear 
layer originating a t  a splitter plate. The temporal problem is far more tractable than 
the analogous spatial problem. In the case where the velocity difference between the 
two streams is small compared to the average velocity, the Taylor hypothesis (or 
Galilean transformation) can be used to relate rigorously the spatial problem to the 
temporal problem, as the shear layer then varies very little on a scale comparable to 
the vortex size. We will assume that predictions based on the Taylor hypothesis are 
at least qualitatively correct even when the transformation is not strictly valid. It 
will be seen that the quantitative match between predicted and observed growth 
rates is quite good even when the velocity difference is an appreciable fraction of the 
average velocity. 

In  the present work, we will investigate the linear stability of a periodic row of 
vortices arranged as in figure 1. The key difference between the present work and 
previous work on the subject resides in the choice of base state used to model the 
streamwise inhomogeneities of the shear layer. Earlier theoretical attempts to account 
for the observed instabilities have relied on one of the two limits in which the stability 
problem becomes analytically tractable: the very large vortex limit in which the shear 
layer deviates only slightly from a parallel shear layer, or the small vortex limit in 
which the vortices are so concentrated that they may be regarded as point vortices. 

The work of Kelly (1967) on two-dimensional disturbances and of Benney & Lin 
(1960) on three-dimensional disturbances, belong to the near-parallel case. Kelly 
considered the stability of a base state consisting of the sum of a hyperbolic tangent 
velocity profile and the spatial part of the most unstable eigenmode of that profile. 
This choice was made on the basis of a Landau expansion of the equilibrated final 
state arising from the initial Helmholtz instability, truncated after the second term 
on the grounds that a highly truncated expansion is sufficient when the final state 
is nearly parallel. Indeed, the observed r.m.s. fluctuating velocity is generally 
only 10-20 yo of the velocity difference A U ;  however, this is not a good measure of 
the validity of the near-parallel assumption, as not just the velocity, nor even the 
vorticity, but the vorticity gradients appear in the stability equations. The gradients 
of vorticity can be very large even when the fluctuating velocities are quite small. 
The results of this effect are vividly apparent in figure 2, where we have compared the 
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&CURE 1.  Definition of co-ordinate system for the free sheer layer. The curves each represent a 

typical vorticity contour. The vortioes repeat indefinitely to the left and right. 
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RGURE 2. Final state vorticity patterns: (a) Two-term Landau expansion in near-parallel regime. 
(b)  Observed vorticity distribution (after Browand & Weidman 1976, figure 6a). 

vorticity contours of a two-term Landau expansion with the vorticity contours ob- 
served by Browand & Weidman. The observed flow in figure 2 ( b )  takes the form of 
a nearly symmetric, flattened vortex, with mostly closed contour lines, whereas the 
two-term Landau expansion corresponds to  a wavy shear layer. The observed vortex 
can be accurately modelled as a steady-state solution of the Euler equations in two 
dimensions, without resorting to a Landau expansion. Browand & Weidman com- 
pared the vortex with the family of steady states discovered by Stuart (1967), with 
stream functions given by 

'Y = 4 In [cash 2% - p  cos 2x1, (1) 
3-2 
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where p is a constant between 0 and 1 ,  which parametrizes the family. In  this 
formula and all subsequent ones, we adopt the convention that the vortex spacing 
L = 77 and the velocity jump AU = 2. The best overall fit is obtained with p = 0-25, 
in which case the vorticity contours agree well over the central portion of the vortex, 
although the observed vorticity decays somewhat more rapidly than that of the 
Stuart vortex towards the edge of the region containing vorticity. From equation (l), 
the x mean and the fluctuating parts of the z gradient of vorticity can be easily com- 
puted, and we have found that, for p = 0-25, the maximum fluctuating part is fully 
76 % of the mean part a t  z = 0.3, and 110 % of the mean part a t  z = 0.1. We see, then, 
that the observed vortices are well into the non-parallel regime. The near-parallel 
theory fails to represent correctly the observed equilibrated vortex structure, and 
neglects terms in the stability equation which in the observed situation are not 
negligible. The Benney-Lin mechanism is not formulated in terms of a stability 
problem, but nevertheless relies on the interaction of weakly nonlinear waves in a 
parallel shear flow and, like the Kelly theory, cannot be applied to the observed deeply 
non-parallel regime as typified by figure 2 ( b ) .  

While it is clear that the observed vortices are not so large as to lead to near-parallel 
flow, i t  is equally clear that they are not so small as to be pointlike. This is evident in 
figure 2 ( b ) ,  and also in the results of the various flow-visualization studies that have 
been performed on the free shear layer. This observation is in agreement with our 
earlier theoretical work on uniform vortices (Pierrehumbert & Widnall 1981), which 
showed that energetic constraints require any vortex row produced by roll-up of a 
thin shear layer to have a vortex width of a t  least 50 yo of the vortex spacing. The 
instability of a row of co-rotating point vortices discussed by Lamb (1932) has a 
number of features in common with the pairing interaction, but, in light of the fact 
that the observed vortices are not pointlike, it is difficult to make confident predictions 
based on Lamb’s calculation. I n  the three-dimensional case, it is tempting to apply 
the results of Bliss (1973), Tsai & Widnall (1976) and Moore & Saffman (19753) 
relating to vortex-tube instabilities, to the vortex tubes present in the observed shear 
layer. However, these theoretical results are valid a t  the observed spanwise wave- 
number of instability only when the vortex cross-sections are nearly circular, a 
situation that obtains only when the vortices are pointlike. 

To avoid the inadequacies inherent in the aforementioned simplified models, we 
will represent t,he equilibrated state of the shear layer with a suitably chosen steady 
solution to the Euler equations in two dimensions. Specifying that the solution be 
periodic in x and asymptotic to  uniform streams for z = +_ co guarantees a flow geo- 
metrically similar to that shown in figure 1, but does not uniquely specify the flow; 
indeed, equation ( 1 )  defines a continuous family of such solutions, and other families 
have been identified (Pierrehumbert & Widnall 1981). Presumably, the realized 
vorticity distribution is determined by viscous smoothing of the periodically rolled-up 
vortex sheet that evolves from the initial Helmholtz instability. I n  any event, we 
have seen that the Stuart vortices fit the observed distribution reasonably well; we 
will discuss the stability properties of only the Stuart vortices in detail, although the 
solution method to be described below is equally applicable to an arbitrary steady 
state. The stability calculation is conceptually simple, but leads to a partial-differential 
equation eigenvalue problem in two independent variables (x and z )  which must be 
solved numerically. With contemporary fast computers and efficient algorithms 
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(notably spectral differentiation and the LR algorithm), this problem can be solved 
quite economically. The stability equations represent an extension of the Rayleigh 
problem to the strongly non-parallel case and reveal some novel stability character- 
istics not present when the steady flow streamlines are circular or parallel. 

2. Mathematical formulation of the stability problem 
We take a co-ordinate system with x pointing in the streamwise direction, y in the 

spanwise direction, and z chosen to complete a right-hand co-ordinate system, as 
depicted in figure 1. The origin of the co-ordinate system is taken midway between 
two vortex centres. We require that the flow be asymptotic to a uniform x velocity 
U, for z ++ m, and to U, for z +-m; further, without loss of generality, we set 
U, = - U, and take units such that U, = 1. In practice, this boundary condition will 
be implemented by assuming that the deviation from a free stream is essentially a 
decaying potential flow for a sufficiently large distance d above or below the shear 
layer. The evolution of the flow is governed by the z and y vorticity equations 

-a,@, = v .v~ , -o .v~ ,  -a,@, = V.VW,-W.VV,, (2% b )  

together with the divergence relation 

a,@, = -a,@,- auwy, 

V2Y = -0, v =  V X Y .  

and the equations linking velocity to vorticity 

We will investigate the evolution of small perturbations to a steady solution to 
equation (2) which is periodic in x and a function of x and z alone. To this end, we 
posit the existence of a steady solution with vorticity coo = 9 Q(z, z )  with associated 
velocity fields Wx(x, z )  and K ( x ,  2). Under these assumptions, the steady solution is 
determined by W . VR = 0, which is satisfied whenever the stream function Y is an 
arbitrary function of Q. Equation ( 1 )  describes such a solution, with vortex spacing 
L = 7 ~ .  Denoting perturbations to the steady flow quantities by V', a', and Y', we 
seek modal solutions of the form 

(:) [x, y, z, tj = ($ [x, z ] e ~ ( a z + ~ ~ ) e - u t  (3) 

where quantities with a tilde are periodic in x with period L. No constraints are placed 
on 01 and /3, save that they be real. As we will be dealing only with linearized equations 
for the disturbances, the choice of exponential dependence in y and t is justified by 
the fact that the base state R is independent of y and t .  Similarly, the assumed form 
of x dependence is a consequence of the periodicity of the base state. The question 
of the completeness of the set of all solutions of this form is an extremely difficult 
one, which we will make no attempt to answer in the present work. 

It is now a straightforward matter to linearize (2) around the steady state, using 
the functional dependences indicated in (3). This procedure results in the linear system 

(4a) 

(4b) 

w . VhG, - 65. V,&WX + iuw, Q, - i/3QE = aQx, 

w. v,, Gu -8.  v, 52 -k iuW, 9, - ipnq = uGu, 
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aza2 = - (ia + a,) az - i&,, ( 4 4  

[(ia+az)2-/32+az2]Y = -G, ( 4 4  

v = ( a ( i a + a , ) + i B p + ~ a 2 ) x 4 [ 1 ,  ( 4 4  

@ 

where V, = %a,+2az. In  subsequent discussion, the tildes will be omitted. The x 
boundary conditions are that all perturbation quantities in (4) be periodic in x with 
period L, which is consistent because of the periodicity of the coefficients of the system. 
The z boundary conditions are that the perturbation flow quantities match to a 
decaying potential flow a t  z = + d .  This requires that the perturbation vorticity 
vanish at z = + d .  It also imposes a boundary condition on Y which is most con- 
veniently stated in terms of the Fourier decomposition of I. If Y(m,z) is the co- 
efficient of eC(znm/L)z, this boundary condition is 

( 5 )  

where ym = ((a+ (2nm/L))2+p2)i .  Except in the case m = a = /3 = 0, the boundary 
conditions determine Y uniquely via (44 .  In the stated exceptional case, the un- 
determined part of the stream function is just a constant, which does not affect the 
velocity when a = Jl= 0. Thus, given a vorticity field satisfying the boundary con- 
ditions, the associated perturbation velocity field is uniquely determined. In fact, 
only the x and y vorticity need be specified, since the z vorticity can be directly 
computed directly from (4c). Note, however, that the requirement of vanishing z 
vorticity at z = d places a constraint on the z-average part of the x and y vorticities. 
Equation (a), together with the boundary conditions just discussed, define an eigen- 
value problem for u, with a and B as parameters. Equations (4a, b) define a linear 
operator on the space of vector fields (wz,wy)  satisfying the vorticity boundary 
conditions; (4c-e) serve as subsidiary relations to enable the computation of z vorticity 
and velocity from the specified x and y vorticity. It is this operator which we will 
represent numerically in Q 3. 

Before continuing to the numerical solution, we will point out some important 
symmetry properties inherent in (4). First, we note that an eigenfunction belonging 
to cr for wavenumber B can be turned into an eigenfunction for -B belonging to the 
same eigenvalue by simply reversing the sign of and making the appropriate 
resulting changes in the x and z vorticity; hence, it is only necessary t o  consider 
positive values of 8. Similarly, by reversing the sign of /3 and V,  and taking the complex 
conjugate of (4)) we can construct an eigenfunction belonging to cr* and -a from one 
belonging to cr and a, so that only positive a need be considered. These symmetries 
arise because there is no preferred y direction in the base state, and because the sta- 
bility equations are derived from a system with only real coefficients. To progress 
further, we define the x and z parity inversion operators, whose action on the velocity 
field is given by 

a,Y(m, Z)l,,*d = T ymY(m, + 4, 

P,: (v,, v,, v,) [z, 2) --+ ( - v,, v,, v,) [in- x,zI; ( 6 4  

The associated transformations of vorticity should be clear. Now, it is easily but 
tediously verified that, from an eigenmode belonging to (u, a,B), we can construct an 
eigenmode belonging to ( - u*, a, 8) by taking the complex conjugate, reversing the 
sign of 5, and applying P,. In the parallel flow case, this property reduces to the 
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familiar property that if complex phase velocity c is an eigenvalue of the Rayleigh 
problem, so is c*, since c = ie/ia in this limit. In  deriving the general property, we 
have made use of the assumed x symmetry of R. The symmetry of i2 in z leads to an 
additional property, namely that we obtain an eigenmode belonging to ( - c, a, /3) by 
applying P, to an eigenmode belonging to (c, a, 8). These last two properties are 
essentially a consequence of the reversibility of the Euler equations, and would not 
obtain if viscous terms had not been discarded. The parity inversion properties imply 
that eigenvalues appear in groups c, & c*. This has the important consequence that 
for every exponentially damped mode there is a corresponding exponentially growing 
mode. Hence, the base state can be at best neutrally stable in a given parameter range. 
Further implications of the inversion properties for the manner in which instabilities 
set in or vanish will be discussed in $6. There is a final symmetry which obtains when 
a = 0. In  this special case, P,P, maps an eigenfunction for (a, a,p) to another eigen- 
function for (e,a,/?). This implies that modes for a = 0 can be chosen to be simul- 
taneous eigenmodes of P,P,, i.e. that they can be chosen to be symmetric or anti- 
symmetric through the vortex centre (marked P in figure 1). 

3. Numerical solution by spectral method 
Our main task here is to approximate the linear operator implicitly defined in 

(4a, b )  by a finite-order matrix, whose eigenvalues can then be found using conven- 
tional methods. We will accomplish this by using a variant of the spectral-collocation 
technique. The use of this method for one-dimensional eigenvalue problems hw been 
described by Boyd (1978), and its extension to the two-dimensional case is entirely 
straightforward. The use of collocation enables the discretization of the operator 
with a minimum of analytical effort, while retaining the high-order accuracy of a 
spectral method. In  addition, the use of collocation to determine the matrix elements 
eliminates any reason for preferring orthogonal basis functions, leaving considerable 
freedom to choose functions automatically satisfying the boundary conditions. 

Equations (4a, b) can be represented in the schematic form 

where9 is the 2 x 2 matrix of operators we wish to represent. We will denote 2-vector 
fields of the sort operated on by 9 with underlined symbols. With this notation, 
suppose that the vector fields E,(x,  z) ,  .n = 0, . . ., N, form a complete set of basis func- 
tions for the space of x-y vorticity fields satisfying the vorticity boundary conditions, 
in the limit N --f 00. Then, for large N, the horizontal vorticity field can be approxi- 
mated uniquely by an expansion of the form 

N 
gJ = r, a,lC,(x,z). 

n=O 

To compute the matrix elements of 9, we need two general procedures. The first 
procedure (‘back transformation’) accepts aa input the values on a finite grid (xi, zk) 
of a field f satisfying the vorticity boundary conditions, and produces as output the 
coefficients f, in an expansion of the form in (8). The second procedure (‘evolution’) 
accepts as input the values of a field g on the grid, and produces as output the values 
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o f 9 g  on the grid. With these two procedures, we can numerically compute the co- 
efficients b,, in the expansion 

by first using the evolution procedure to compute the left-hand side for each m, and 
then using the back transformation procedure to compute the coefficients on the 
right-hand side. Then, b,, is the desired matrix approximation, since substitution of 
(8) into (7)  and matching coefficients of &, results in the finite-order matrix eigenvalue 
problem 

N 

m = O  
X amb,, = ua, for n = 0, ..., N .  (10) 

In order to carry out this computation, we need to specify the expansion functions, 
derive the back transformation procedure, and derive the evolution procedure. 

Considerable savings in time for the computation of b,, result from defining the En 
in terms of separable functions of x and z. A truncated general expansion of g satisfying 
the conditions of vanishing vorticity at  z = & d and periodicity is given by 

Nz 

+ X A m o Q o ( z )  ( i p* -9 ( ia+ax) )Pm(x) ,  (11) 
m=O 

where the P,(x) are periodic and complete in the space of periodic functions, the 
&(z) vanish at  z = & d and are complete in the space of functions that do SO,  and the 
Qn satisfy the additional condition that 

This condition and the form of (11) are dictated by the constraint on vanishing z 
vorticity at  the upper and lower boundaries in conjunction with (4c). This form of 
expansion implies vanishing mean component of perturbation y vorticity when a = 0, 
and vanishing mean x component when /3 = 0, however; by integrating (4a, b )  over 
one period in x and from z = - d to z = d ,  it is found that the mean components vanish 
under the stated conditions unless u = 0. Hence, as a or /3 is continuously varied, the 
expansion becomes possibly inadequate only at  those points where u = 0 exactly, 
and these isolated points can be located using interpolation. Further, the expansion 
places no constraints on the behaviour of the mean components in the limit a + 0 
or /I+ 0, since the coefficients A,, are free to become arbitrarily large as zero is 
approached. 

In order to carry out the back transformation, we define collocation points 

51, . . . , X  &+l and 21, . . . , Z N , + l ;  

if these points are suitably chosen, the square matrices P,(xi) and Qn(zk) will be 
invertible, with inverses defined so that 

and 
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Invertibility obviously requires lxNz+l - xlI < L and - d < z1 < z ~ , + ~  < d,  since other- 
wise two columns of the P and Q matrices vanish or are linearly dependent. With 
these definitions, the coefficients of the non-mean part are immediately found to be 

A m ,  = (5 wz(xj, zk) Qi3 52, ( 1 4 4  
3 

where n $: 0. Note that, because of the separable expansion, the back transformation 
requires only O((Nz + 1)s + (N, + 1)s) operations rather than O((Nz + 1)3 (N, + 1)3), 
which represents a substantial saving in operation count. The determination of the 
A,, components is almost equally straightforward. By integrating (1 1) from z = - d 
to z = d,  using (12 ) ,  and taking the z-component of the curl of the resulting equation, 
we obtain 

N- 

where overbars indicate quantities integrated in z. The A,, components are then 
found from (15) by inverting the matrix 

In  the special case, a = = 0, the row Moj vanishes (assuming we have chosen 
Po = const.), leaving &indeterminate. As we have already discussed, when a = p = 0, 
the mean component in the expansion is nugatory; hence, the row of M corresponding 
to m = 0 can be neglected, and the remainder of the matrix inverted on the space of 
functions with vanishing x means in this special case. In  general, this restricted inverse 
could be computed by neglecting the column of M corresponding to one given collo- 
cation point (say, xiNz), but, for the simple Fourier basis functions we will choose for 
P, it is possible to effect the inversion analytically. The evaluation of the x derivative 
appearing on the left-hand side of (15) will be discussed shortly. 

Since the Pm need only be complete and periodic, a logical choice is 

cos (2mx) ,  m even, 

sin (2((m + 1)/2) x), m odd, (17) { Pm(x) = 

with associated collocation points given by 

x -  - j= 1,2 ,..., Nz+l. 
- 3  Nz+ 2’ 

We have chosen sines and cosines rather than complex exponentials so as to make 
the basis functions parity eigenfunctions. The choice of the Q, is only slightly more 
complicated. It is convenient to carry out the z expansion in terms of Tschebychev 
polynomials. For generality, we introduce a stretched variable r E [ - 1,1] defined by 

tanh-1 (Ar) 
tanh-l ( A )  ’ z = d  

where A E [0,1]. For A near zero, the mapping is approximately linear, whereas, for A 
near unity, an evenly spaced set of points z j  is mapped to a set of points r j  clustered 
near k 1. This variable stretching is necessary because Tschebychev polynomials vary 
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most rapidly for argument r near & 1, whereas the steady shear layer varies most 
rapidly near z = 0. Now, let Tn = Tn(r) be the nth Tschebychev polynomial of argu- 
ment r ,  and let r’ = dr/dz, so dz = drlr‘ .  Then, we can satisfy the requirements set for 
Q, by taking 

J -1 
and. for n > 0. 

where 

Note that Q, is symmetric in z for n even and antisymmetric for n odd. A suitable set 
of collocation points, in light of the definition of the Tschebychev polynomials, is 
given by 

k = 1, . . . ,N,+ 1. 

The above discussion has implicitly defined the basis functions En and the back 
transformation procedure. It remains to specify the evolution procedure. This in- 
volves: numerical x differentiation to compute the right-hand side of (4c), numerical 
z integration to solve (4c) for w,, solution of the three independent elliptic equations 
for Y stated in (4d) and (5 ) ,  differentiation to h d  the velocity field via (4e), and 
finally differentiation to compute the vorticity gradients appearing in the left-hand 
sides of (4a, b) .  The technique of pseudo-spectral differentiation and integration is 
by now well known (see Gottlieb & Orszag 1977). In  the collocation variant, one finds 
the x derivative of a function f (2) tabulated on points xf by expanding f in functions 
Pm(x) using (13a), taking the x-derivative of each Pm analytically, and transforming 
back to x-space, so that the derivative is given by 

Similarly, a function g(r)  can be differentiated with respect to r by expanding in 
Tschebychev polynomials Tn( r )  and substituting their derivatives before trans- 
forming back to r-space. To integrate with respect to r,  the integrals of Tn(r) are sub- 
stituted instead. The z derivatives and integrals can then be computed using the 
relations. dg/dz = r’dg/dr and l g d z  = I (g/r ’ )  dr.  To solve the elliptic equation 

we first expand the right-hand side in a, series 

using collocation, and assume an expansion of the form 

)Nz N a  
\r = 2 x Ymne2imSmn(z). 

m = - ) N Z n  = 0 
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The Smn are chosen to be complete in the space of functions satisfying the boundary 
condition given in (5 ) ,  so that we need 

asSmnls-*d = T YmSmnC 4. (26) 

Letting r$ = r’l,=.d, we can satisfy this requirement with 

(27) 
dj&T,(r) +dgk T’z+2(r), n even, 
a’2kTn+2(r) + d#L Tl(r), n odd, Smn(Z) = ( 

where 
4% = - (4T;V,+2(1) +~mTN~+2(1))3 4% = &Th(1)+ymFn(1) (28) 

dgk = - (r& + ym), dgL = rlz 1) + ym, (29) 
for n even, and 

for n odd. In  these relations, we have assumed N, even. Y is known from (25) if Ymn 
is known; to compute the latter, we substitute (25) and (24) into (23), and write the 
resulting equation at the collocation points zl, . . . , z ~ , + ~  defined as before. This results 
in the equation 

Hence, the Ymn may be found by inverting the N, + 1 matrices 

These matrix elements are most conveniently computed numerically using spectral 
z-differentiation. The matrices need be computed and inverted only once for each 
choice of a and 8, a process that requires only O((N,) operations. Once the in- 
verses have been computed, each solution of (23) requires a further O((Nz)(N,)2) 
operations. When a = = 0, the row Cb? vanishes, since yo = 0 and S, = const. in 
this case. This is just a reflection of the fact that Y is physically indeterminate to the 
extent of addition of a constant when a = 8 = 0 ;  the inversion can be made unique 
by dropping the S, term from (25) and eliminating one collocation point from (31). 
Solvability of (23) when a = 8 = 0 is guaranteed because the mean components of 
perturbation vorticity vanish in this limit. 

The procedure to compute one row of the discretized matrix may be summarized 
as follows: 

(1) Pick a basis function appearing in the expansion given in (1 1). This determines 

(2) Compute the right-hand side of (4c) and h d  w, by spectral integration. 
(3) From w,, o,, w, compute ‘€‘,,Yp,, Ys, by solving ( 4 4 .  
(4) Compute the velocity field V,, V,,V,, from ( 4 e ) ,  using spectral differentiation. 
(5) Substitute V,,V,,V,, w,,w,, w,, into (4a, b), and determine the values of the left- 

hand side on the collocation grid. 
(6 )  Using the back-transformation procedure, numerically express the 2-vector 

field resulting from the previous step in an expansion of the form of (11). These co- 
efficients constitute the desired row. 

This procedure is repeated until all the basis functions appearing in (1 1) are ex- 
hausted. The procedure is equivalent to computing the time rate of change of a 

@ & j Y  Zk) and W,(Zj, Zk). 
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complete set of initial conditions for w, and wy. When a = 0, the eigenfunctions can 
be chosen to have definite parity, so that the matrix splits into two independent sub- 
matrices: one corresponding to wy even and w, odd, and the other corresponding to 
wy odd and w, even. When /3 = 6, the eigenfunctions also split into two classes: the 
first with wy = 0 and the second with w, = 0. The latter class of modes is physically 
two-dimensional, as the modes lack a y-velocity component. 

The procedure outlined above results in an N x N complex general matrix, whose 
eigenvalues are to be found numerically; N 2: N, N, for a = 0, and N 21 2N, N, other- 
wise. Computation of the matrix elements requires O ( N i  N:),  while computation of 
the eigenvalues by reduction of the matrix to Hessenberg form and subsequent 
application of the LR algorithm requires O ( N 3 )  = O(NiN,3) operations. This estimate 
indicates that the computation of the eigenvalues of the discretized matrix consumes 
the lion’s share of the computational effort, and hence is the prime target for optimi- 
zation. We ran our code on the 4-pipe Texas Instruments ASC at the NOAA Geo- 
physical Fluid Dynamics Laboratory in Princeton, N.J. The ASC is capable of per- 
forming 48 x los single precision floating point operations per second, but attains this 
speed only when operating in vector mode, i.e. performing operations that can essen- 
tially be carried out in parallel. To take advantage of this feature, we rewrote the 
EISPACK (Smith et al .  1974) eigenvalue routines COMHES and COMLR so as to 
vectorize as completely as feasible. With these modifications, all the eigenvalues of 
a 120 x 120 double precision complex matrix could be found in 55 C.P.U. seconds. 
(A double-precision complex word on the ASC occupies 64 bits of storage.) The time 
required for computation of the matrix elements, by comparison, is under 10 yo of 
this for N, = 6 and N, = 8. The cubic dependence of C.P.U. time on N underscores the 
necessity of using a spectral representation of the problem. Boyd (1978) estimates 
that typically four times as many grid points in each direction are needed for a finite- 
difference method to equal a spectral method in accuracy. This translates into a factor 
of 4096 difference in running time between a two-dimensional spectral and finite- 
difference algorithm of comparable accuracy. 

The numerical method requires the specification of four approximation parameters: 
the height d of the computational domain, the variable stretching parameter A, and 
the truncation numbers N, and N,. A value d = 1.5 was found to be adequate; at  this 
height, the steady-state vorticity falls to 1 yo of its maximum value even in the worst 
case p = 0. In addition, it was experimentally determined that increasing d beyond 
this value produced only negligible changes in the eigenvalues computed. A value 
A = 0.95 was arrived at  by solving numerically for the velocity field associated with 
vorticity a, Q for various p, and varying h to obtain the best overall accuracy. N, and 
N, were determined on a case-by-case basis by studying the behaviour of the eigen- 
values of interest as the truncation numbers were increased, and picking values of 
truncation numbers corresponding to convergence to graphical (usually two significant 
figure) accuracy. The convergence tests were generally continued to N, and N, both 
1-5 times the ‘converged’ values. In many cases, the truncation numbers used for 
particular calculations to be reported were excessive, because it was convenient to 
use the same N, and N, for entire series of calculations. 



Instabilities of a spatially periodic shear flow 71 

4. Subharmonic instabilities: pairing and helical pairing 
We turn first to the class of modes with a = 1. Since L = ?T these represent sub- 

harmonic modes, which repeat with a period 2L comprising two vortices. The physical 
modes (with the eiax phase factor multiplied back in) have the property that 

f ( X  + L)  = -f(x), 

where f is any perturbation quantity. Thus, generally speaking, the subharmonic 
modes are modes in which adjacent vortices are displaced in opposite directions. 

In figure 3, we show the growth rate of the most unstable mode with p = 0 as a 
function of the vortex core size parameter p. These modes represent two-dimensional 
disturbances to the two-dimensional base state. These calculations, as with all others 
to be discussed in this section, were carried out with N, = 4 (5  modes in x direction) 
and N, = 6 (7 modes in the z direction). In  all cases considered, the most unstable 
mode was purely exponentially growing, i.e. ai = 0. For p = 0, the base state reduces 
to a parallel hyperbolic tangent shear flow, the stability properties of which have been 
summarized by Kelly (1967). We find a growth rate of 0.367 for the parallel case, 
which compares well with the growth rate of 0.369 reported by Kelly. It is note- 
worthy that the maximum growth rate in the parallel-flow case occurs at  a = 0.886, 
so that the ‘subharmonic’ mode is nearly the most unstable even in the parallel case. 
As p is increased, the growth rate increases monotonically, and becomes asymptotic 
to a value a, = 0.5. This asymptote has been essentially attained by p = 0-3. Lamb’s 
instability of a row of point vortices (Lamb 1932) has a growth rate of 0.5 when 
reduced to our units. Thus, the behaviour shown in figure 3 represents a smooth 
transition from parallel-flow-like instability to point-vortex-like instability. An im- 
portant observation is that the asymptote is reached at moderate p, when the vortices 
are still relatively large. The mode shape provides further grounds for identifying the 
family of instabilities in figure 3 with an interaction of the pairing type. In  figure 4, 
we show contour plots of perturbation y-vorticity (including the phase factor) over 
the stretch x = 0 to x = L, encompassing one unperturbed vortex. The eigenmode 
multiplied by the esax phase factor can be chosen so as to be purely real. Therefore, 
the phase relationship between the subharmonic and the fundamental is not altered 
by multiplication by a complex constant, except possibly to the extent of an overall 
reversal of sign of the perturbation. The cross marks the centre of the unperturbed 
vortex, and regions of negative vorticity are indicated by shading. The most striking 
feature of this figure is the slanted nodal line passing through the unperturbed vortex 
centre. This structure indicates that the instability shifts the vortex up and to the 
right. The comparable plot between x = L and x = 2L is merely reversed in sign, and 
represents a shift of the vortex down and to the left. The net motion, then, resembles 
the beginning of a clockwise rotation of the vortex and its neighbour about each other. 

The pairing interaction has been particularly well studied, beginning with its ob- 
servation by Wille (1963). Browand & Weidman (1976) have measured vorticity 
contours of vortices in the process of pairing and arrived at a picture very like the 
mutual rotation described above, once it is observed that the higher-speed stream is 
represented as being at  the bottom half of their figure 6(b), leading to counter- 
clockwise rotation. In  addition, time scales for the completion of pairing can be esti- 
mated by relating the kinetics of pairing to the rate of shear-layer spread. Brown & 
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RGWE 3. Dependence of growth rate of the two-dimensional pairing mode on the vortex core 
size parameter. p = 0 corresponds to a parallel hyperbolic tangent shear profile. The lower 
daahed line ie the independently ca1cule;td growth rate for the instability of a hyperbolic 
tangent sheer flow, while the upper represents the growth rate for the subharmonic instability 
of a row of point vortices, aa given by Lamb. 

FIQURE 4. Contours of spanwise (y-) vorticity for the two-dimensional pairing mode with 
p = 0.2. Shaded areas are regions of negative vorticity. The cross denotes the location of the 
centre of the unperturbed vortex. Only a half-period of the mode is ehown. 
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Roshko (1974) used the Taylor hypothesis to derive such a relation; their (4.1) can 
be cast in the form 

where T* is the characteristic time for vortex amalgamation by pairing, measured in 
units of local time scale a"/( Ul - U,) and aU is the vorticity thickness. Brown & Roshko 
examined the rates of spread measured by numerous experimenters under varying 
conditions, and found that (32) fit the collected observations remarkably well. A 
value T* = 11.1 1 can be measured from their figure 10. At p = 0.25, the e-folding time 
for the calculated pairing instability in the same local units is T,* = 4.08; hence, the 
characteristic amalgamation time is 2-72 e-folding times, corresponding to an ampli- 
fication factor of 16. Thus, the pairing instability has a time scale which could account 
for the observed rate of spread. Even more direct confirmation may be found in the 
work of Miksad (1972) who directly measured the growth rate of energy in the sub- 
harmonic component. From his figure 11, the subharmonic growth rate of r.m.8. 
velocity in the post-equilibrated phase can be calculated, and reduces to rr = 0.46 in 
our units. This agrees very well with our growth rate u, = 0.49 at p = 0.26. In  light 
of these comparisons, there is little reason to doubt that the pairing instability is the 
mechanism of subharmonic generation and shear-layer growth. 

An alternative mechanism for shear-layer growth has been proposed by Moore & 
Saffman (1976a). This process, known as the tearing mechanism, relies on certain 
mathematical properties of the nonlinear steady states of the shear layer which we 
have confirmed elsewhere (Pierrehumbert & Widnal 1981). The tearing mechanism 
is a nonlinear process which is unrelated to the linear stability properties of the vortex 
row, and whose time scale depends on the rate of entrainment of irrotational fluid 
into the vortex cores by turbulent processes. It has not proved possible to make 
quantitative predictions of the time scale of this amalgamation process, but it is 
certain that the characteristic amalgamation time is sensitive to the degree of small- 
scale turbulence. Experimental evidence does not support such a dependence. In  
fitting (32), Brown & Roshko found similar values of amalgamation time over widely 
varying experimental conditions. Moreover, experiments varying unit Reynolds 
number (figure 20 in Brown & Roshko; figure 1 in Bernal et al.) demonstrate quite 
clearly that shear-layer growth is little affected by the level of small-scale turbulence. 
It thus seems that tearing does not play a central role in determining the dynamics of 
shear-layer growth, although it may still play some part in determining the size of 
the vortices. 

We turn now to the behaviour of the modes shown in figure 3 when /3 > 0, so that 
the modes have spanwise variations. In  figure 6, we show the growth rates as a function 
of /3 for various values of p. Significantly, the pairing instability is always most unstable 
in the two-dimensional case /3 = 0, and has a short-wave cutoff in /3. Convergence of 
the expansion near the stability boundaries wm very slow, so the numerical accuracy 
of the critical wavenumbers for stability is somewhat in doubt. As p is increased, the 
short-wave cutoff first increases to /3 = 3 at p = 0-1, and thereafter decreases again 
as p is further increased, reaching a value /3 = 2-2 a t  p = 0-25. This behaviour is the 
result of two competing effects: Initially, increasing p produces a thin, flat vortex 
structure which acts somewhat like a thinner shear layer than the original one, and 
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FIQURE 5. Growth rates for helical pairing as a function of spanwise wavenumber. 
Numbers on curves give values of p.  

can therefore support smaller-scale instabilities. As p is increased further, however, 
the vorticity is gathered up into a compact core, and the stabilizing effects of self- 
induced vortex tube rotation begin to become important. The y-vorticity cross- 
section of the mode is similar to figure 4, except that the nodal plane becomes more 
horizontal as.the cutoff is approached. Since the modes for ( C T , ~ )  and (CT, -8) differ 
only in the sign of c, we can superpose solutions for + B  to obtain planar modes of 
the form 

wy(z, y, z, t )  = errtW(OUe$az cos 

wz(z,  y, z, t )  = e u t 9 ( i O z  e(ar) sin ( B y ) , }  (fiy). 

For these modes, the perturbed vortex cores lie in parallel planes intersecting the 
plane z = 0 along the lines x = BL, 3L, 5L, ... . Because of the subharmonic depen- 
dence on x, neighbouring vortex cores are shifted alternately above and below the 
plane z = 0. We have depicted this situation in figure 6, annotating points above the 
plane with a + and below the plane with a - . The displacements of the vortex tubes 
have been exaggerated for purposes of clarity. For linear theory to be valid, the dis- 
placements of the vortex cores would have to remain small compared to the core size. 
From this figure, it is clear that if nonlinear effects do not drastically alter the character 
of the instability as it grows the instability would result in pairing of the middle vortex 
tube with its upstream neighbour at spanwise stations By = -IT, n, 3n, . . ., and with 
its downstream neighbour at /?y = 0,2n, . . . . This process would result in phase dis- 
locations in the spanwise direction, and the generation of coherent three-dimensional 
structures with a typical scale p(Ay) = n. The existence of a sharp short-wave cutoff 
for this type of instability has an interesting implication for its behaviour in the 
context of spatial development of a shear layer. In  dimensional form, the short-wave 
cutoff implies that spanwise scales with /3& > const. do not amplify as they advect 
downstream. Thus, as debris of a given scale produced by an instability at  x,, moves to 

(33) 
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FIGURE 6. Three-dimensional structure of helical pairing. Points annotated with a + are dis- 
placed upward, while those with a - are displamd downward. Circled regions are regions of 
localized pairing. The state shown is an extrapolation of the effects of the instability beyond the 
range in which linear theory is valid. 

larger x, it  will eventually pass the short-wave cutoff and cease to grow, since 8, is 
continually increasing downstream. This effect limits the extent to which localized 
pairing can disrupt the large-scale two-dimensional structure, particularly since the 
two-dimensional pairing instability is more vigorous than its three-dimensional rela- 
tives, and can therefore increase the shear-layer thickness by pairing before the three- 
dimensional instability can get very far. 

Chandrsuda et al. (1978) have directly observed generation of spanwise phase dis- 
locations via localized pairing, and given the process the name ‘helical pairing ’. We 
will continue this terminology, although the localized pairing instability we have dis- 
cussed is made up of planar vortex waves rather than helical ones. (The instability is 
helical in the sense that it causes neighbouring vortex tubes to twist around one 
another.) The long-wave nature of helical pairing has been experimentally confirmed 
by Chandrsuda et al.; moreover, the flow pattern shown in their figure 3 bears a re- 
semblance to the mode shape we have depicted in figure 6. Generation of branching 
vortices has been observed in experiments by Browand & Troutt (1980) and in numeri- 
cal simulations by Mansour, Feniger & Reynolds (1978). Browand & Troutt (1980) 
have measured velocity correlation as a function of spanwise separation of the velocity 
probes, and concluded that the shear layer reaches an asymptotic state composed of 
large-scale structures with a typical spanwise scale of 2.3 times the local vorticity 
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thickness. Wygnanski et al. (1979) observed similar values of the spanwise correlation 
scale, although they did not verify that an asymptotic state had been reached. In our 
units, this scale corresponds to a wavenumber = 1.4, which according to figure 5 
is capable of moderately rapid growth when p = 0.25. Browand & Troutt find that 
the beginning of the asymptotic self-similar regime corresponds to the completion of 
the second vortex pairing, which is consistent with the time scales involved in helical 
pairing. Thus, it is plausible that the three-dimensional structures observed in the 
shear layer are at  least partly due to the helical pairing instability. However, tw we 
will discuss in the next section, there is another instability which can generate three- 
dimensional structures, and which may also contribute to the observed correlation 
patterns. 

5. Fundamental mode instabilities: the onset of streamwise streaks 
In  addition to the subharmonic family of instabilities, there is a family of fundamen- 

tal mode instabilities with a = 0, which repeat in x with the same periodicity as the 
undisturbed vortex row, so that adjacent cores move in the same direction. Modes 
with a = 0 split into two subclasses: those with wy antisymmetric through the vortex 
centre and those with wy symmetric through the vortex centre. We have found appre- 
ciable instability only for modes of the former class, which correspond to net trans- 
lation of the vortex cores rather than bulging.? In figure 7, we show the growth rates 
for the fundamental mode instability as a function of p for p = 0.1 and p = 0.25. 
The calculations were carried out with N, = 8, N, = 8. The modes have purely expo- 
nential growth, and the growth rate falls to zero linearly as B -+ 0. We have found that 
the steady perturbation which the mode reduces to in the two-dimensional limit 
represents an infinitesimal translation of the vortex row, which of course yields another 
steady solution; for this reason, we will refer to the instability as the ‘translative 
instability ’. 

The translative instability, unlike the pairing instability, is not an extension of any 
instability occurring on a parallel shear layer. In the parallel case (p  = 0), the curves 
shown in figure 7 fall identically to zero, and the mode represents a parallel flow 
perturbation to the initial parallel shear layer, which has the effect of moving the 
shear layer up or down at  different spanwise stations while leaving it parallel. As p 
is increased, the maximum growth rate increases and the most unstable wavenumber 
moves out from zero. At p = 0.25, the maximum growth rate is 0.46, somewhat less 
than that of the two-dimensional pairing instability, and occurs near /3 = 3, represent- 
ing a spanwise wavelength Q of the spacing to the undisturbed vortices. An important 
feature of the instability is that the growth rate decreases only slowly from its maxi- 
mum value as the wavenumber is increased. This means that the instability suffers 
little ‘detuning’ as the thickness of the shear layer grows. From figure 7, it can be 
seen that the translative instability for p = 0.25 can survive and grow through at  
least three doublings of shear-layer thickness (pairings) before its growth rate is 
appreciably reduced. 

In figure 8, we show contours of perturbation y-vorticity fort? = 2, p = 0.25. As with 
the pairing instability, the translative mode shifts the vortex up and to the right, into 

t Note added in proof: Two-dimensional fundamental modes (a = 0, B = 0) were never 
found to be unstable. 



Instabilitim of a qatially periodic shear $ow 77 

B 
F’IGURE 7. Growth rates of the translative instability of a periodio shear layer, as a function of 

axial wavenumber. Numbera on curvea give valuea of core size parameter. 

FIGURE 8. Same as figure 4, but for the translative instability. 
A full period is shown in this case. 
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the free stream, although the translative instability is rather more localized in the 
vortex core than was pairing. Neighbouring vortices in the translative instability are 
of course Bhifted in the same direction. This description represents the behaviour at  
only one spanwise station. The three-dimensional structure is given by (33) with 
a = 0; wy, and hence the vortex shift, has nodes at y = SIT, $77, . . ., whereas the stream- 
wise vorticity w, has maxima at  these values. The vortex tube is shifted up into the 
fast stream at py = 0 ,2n ,  ..., and down into the slow stream at $y = -T ,  n, ... , This 
situation is depicted in figure 9. As in figure 6 the vortex tube displacements have been 
extrapolated beyond the range in which linear theory is valid. Under the assumption 
that nonlinearity does not alter the fundamental character of the instability, we can 
offer some speculations as to the evolution of the flow after the translative instability 
sets in. As the instability progresses, a loop of vortex tube at y = 0 is lifted up into 
the free stream and stretched out. Through tilting of the vortex tube, a sizable stream- 
wise vorticity component is generated a t  the points marked €’ in the figure. The 
streamwise vorticity takes the form of a pair of counter-rotating streamwise vortices 
with a region of upwelling in between. The upwelling regions occur at  spanwise inter- 
vals of an/$. 

For p = 0-25, the spanwise wavelength associated with the translative instability 
is about half that characteristic of helical pairing. This scale is smaller than the scale 
implied by the spanwise correlation experiments reviewed in the previous section, 
Moreover, the broad wavenumber range in which the translative instabilit, -7 occurs 
does not reflect the definite scaling of observed correlation length with local vorticity 
thickness as well as does the helical pairing mode. There is a degree of arbitrariness 
in the comparison of instability scales with correlation lengths, and it is therefore 
difficuit to say with certainty the degree to which the translative instability is con- 
nected with the observed large-scale three-dimensional structures as reflected in the 
correlation measurements. However, there is a phenomenon occurring in the shear 
layer which seems to correspond to the translative instability. This phenomenon is 
the streaky structure observed by Breidenthal (1978) and by Bernal et al. (1979). 
The streaks set in with a spanwise spacing somewhat less than the wavelength of the 
initial Kelvin-Helmholtz instability; this is consistent with the properties of the 
translative instability, as the translative instability has a growth rate comparable to 
that of the pairing instability, so that it should set in simultaneously with the first pair- 
ing. This picture is also supported by the earlier work of Miksad (1972), who reported 
that the region of subharmonic growth following equilibration of the initial Kelvin- 
Helmholtz instability is coincident with the region of initial generation of three- 
dimensionality. Like the translative instability, the streak pattern survives and grows 
through several pairings with little change in scale. The following description, from 
Bernal et al. (1979), underscores the resemblance to the translative instability: ‘The 
streaks sometirries originate from a sinusoidal pattern that develops in the spanwise 
vortices which emerge from the Kelvin-Helmholz instability. Amplification of the 
pattern’s amplitude, possibly due to straining, as it convects downstream with the 
vortices tends to stretch out the streamwise oriented segments of the pattern; the 
streaks apparently result from this stretching.’ In  figure 11 of Breidenthal (1978) a 
possible instance of this development is shown. The wavy pattern is visible on three 
adjacent vortex tubes, and the basic characteristics of the translative instability are 
evident: (1) The pattern is coherent in phase over the three vortices, so that the 
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FIGURE 9. Three-dimensional structure of the translative instability of a periodic shear layer. 
As with figure 6, the state shown represents an extrapolation to a highly nonlinear regime. 

crests line up, (2) the wavelength is shorter than the vortex spacing and doesn’t 
change downstream, and (3) the instability is most visible in the central regions of the 
vortices, and an outer envelope of relatively undisturbed fluid is faintly visible.7 In  
addition, the characteristic streamwise counter-rotating vortices and regions of up- 
welling have been directly observed by Bernal et al. (1979) inindependent experiments. 
We note in passing that the instability does not mark the end of the organized structure 
of the shear layer; the experiments indicate that the instability leads to the generation 
of small-scale turbulence and increased mixedness, but leaves the large-scale structure 
relatively intact. 

6.  Higher-order modes 
Besides the instabilities discussed above, there are also a number of three-dimen- 

sional instabilities of a periodic shear layer which have a more complicated modal 
structure. These modes all have weaker growth rates than the pairing and trans!ative 
modes, and are generally oscillatory (ai + 0). We show the family of eigenvalues for 
one such mode in figure 10. The family consists of a pair of neuxally stable oscilla- 
tions at  B = 0, whose frequencies become degenerate at  some finite value of B. Past 
this point, the frequencies coalesce and the growth rate increases from zero. The 

t Dimotakis (1980, personal communication), however, has pointed out certain possible 
ambiguities in the connection between the dark dye regions in Breidenthal’s photograph and 
displaced vortex c o w .  Additional experimental work is required to resolve this ambiguity. 
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ROWRE 10. Onset of instability for a typical higher-order mode, with a = 1 ,  p = 0.2. The solid 
lines in this case give the imaginary parts of the eigenvalues, while the daahed line gives the 
growth rate. 

number of eigenvalues remains constant in this process, as we begin with two eigen- 
values u = i o f ) ,  ida) and end with two eigenvalues CT = & ar + ia,. This process of 
transition through degeneracy is reminiscent of the onset of short-wave instabilities 
on a weakly strained vortex tube, as discussed by Tsai & Widnall(l976). In  fact, this 
sort of transition from neutral stability to instability is to be expected in any inviscid 
system, since unstable eigenvalues for such systems are always born in pairs with 
real parts & a,. This means that, insofar as the system can be represented as a finite- 
order matrix with non-degenerate eigenvalues, two neutrally stable eigenvalues must 
coalesce at  the transition point in order to prevent the number of eigenvalues after 
the transition point from exceeding the order of the matrix. 

Because the higher-order modes involve rather small scales, they are more sensitive 
to numerical inaccuracy and inaccuracy of the physical model taken for the shear 
layer; hence, we are reluctant to draw comparisons with the observations, even though 
some of the calculated growth rates would be large enough t o  produce measurable 
effects. Nevertheless, the existence of higher-order instabilities in the mathematical 
model indicates that something similar may occur in the physical situation. 

7. Conclusions 
We have found that an instability calculation based on a reaslitic model of the 

observed vortical structure of the free shear layer can reproduce certain features of a 
number of stages in the development of the shear layer. There are two main classes 
of instability: subharmonic and translative. The subharmonic instability has its 
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greatest growth rate for modes with no spanwise variation, in which case it corres- 
ponds to vortex pairing. The calculated and observed growth rates of the pairing 
instability are in good agreement. Pairing can also take place, albeit at reduced 
growth rates, in a three-dimensional form which would lead to a branched vortex 
structure similar to that which has been observed in the later stages of shear-layer 
development. Shear-layer growth by vortex amalgamation and generation of three- 
dimensionality by localized pairing are thus associated with the subharmonic in- 
stabilities. The translative instability, on the other hand, may be associated with the 
streamwise streak structure, and represents a distinct mechanism for the generation 
of three-dimensional motions. 

A striking feature of the translative instability is its broadband nature, and in 
particular its high growth rate at short spanwise wavelengths. This characteristic 
suggests that, once the relatively smooth two-dimensional vortex structure has de- 
veloped, energy can be transferred directly to small three-dimensional scales of a size 
limited only by dissipation, via the translative instability. This is rather different 
from the usual picture of stepwise turbulent cascade. In  addition, the broad growth 
rate maximum implies that many spatial scales can be introduced simultaneously; 
such a richness of scales is decidedly characteristic of turbulence. We note that 
Orszag & Patera (1980) have discovered a similar broadband instability in their 
study of subcritical transition in plane channel flows. This suggests that instabilities 
leading to a direct cascade to small scales may be a general feature of the two-dimen- 
sional non-parallel flow instability problem. 

Much additional work remains to be done in order to complete the characterization 
of the instabilities of coherent shear-layer vortices. For example, we have centred 
attention only on the fundamental mode (a = 0) and first subharmonic mode (a = 1) 
instabilities, even though a is a continuous parameter of the stability problem. Al- 
though we have ascertained that the first subharmonic mode is very nearly the most 
unstable mode with regard to two-dimensional instabilities, the parametric depen- 
dence of the three-dimensional instabilities on a has not yet been explored. Similarly, 
additional vorticity distributions and small core sizes need to be studied, in order to 
cover a wider range of experimentally realizable situations. Finally, the effect of non- 
linearity on the development of the instabilities - and in particular on the competition 
between the two- and three-dimensional modes - needs to be investigated. Because 
of the complexity of the flow, there is little hope for progress on this latter problem 
outside of a full three-dimensional numerical simulation. 

There is a lack of quantitative data on the rate of growth of controlled three- 
dimensional disturbances, which has somewhat limited numerical comparisons of our 
calculated growth rates with observations. It is suggested that a vibrating ribbon 
experiment in which the spanwise wavenumber and the frequency of the vibration 
can be varied independently would be informative. With such an apparatus, sub- 
harmonic and fundamental mode disturbances of definite spanwise scale could be 
excited, and their growth monitored downstream with a rake of hot-wire anemometers. 
The broadband nature of the instabilities, however, may make detailed comparison 
between theory and experiment difficult. 
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benefit of a number of informative conversations with Dr I. Orlanski of the GFDL. 

This work was supported in part by the National Science Foundation under Contracts 
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